Author: 0xjacobzhao | https://linktr.ee/0xjacobzhao In our previous Crypto AI series research reports, we have consistently emphasized the view that the most practical application scenarios in the current crypto field are mainly concentrated in stablecoin payments and DeFi, while Agents are the key interface for the AI industry facing users. Therefore, in the trend of Crypto and AI integration, the two most valuable paths are: AgentFi, based on existing mature DeFi protocols (basic strategies like lending and liquidity mining, as well as advanced strategies like Swap, Pendle PT, and funding rate arbitrage) in the short term; and Agent Payment, centering on stablecoin settlement and relying on protocols such as ACP/AP2/x402/ERC-8004 in the medium to long term. Prediction markets have become an undeniable new industry trend in 2025, with their total annual trading volume surging from approximately $9 billion in 2024 to over $40 billion in 2025, achieving a year-over-year growth of more than 400%. This significant growth is driven by multiple factors: uncertainty demand brought by macro-political events (such as the 2024 US election), the maturity of infrastructure and trading models, and the thawing of the regulatory environment (Kalshi's lawsuit victory and Polymarket's return to the US). Prediction Market Agents are showing early embryonic forms in early 2026 and are poised to become a continuously emerging product form in the agent field over the coming year. I. Prediction Markets: Betting to Truth Layer A prediction market is a financial mechanism for trading on the outcomes of future events. Contract prices essentially reflect the market's collective judgment on the probability of an event occurring. Its effectiveness stems from the combination of crowd wisdom and economic incentives: in an environment of anonymous, real-money betting, scattered information is quickly integrated into price signals weighted by financial willingness, thereby significantly reducing noise and false judgments. By the end of 2025, prediction markets have basically formed a duopoly dominated by Polymarket and Kalshi. According to Forbes, the total trading volume in 2025 reached approximately $44 billion, with Polymarket contributing about $21.5 billion and Kalshi about $17.1 billion. Relying on its legal victory in the previous election contract case, its first-mover compliance advantage in the US sports prediction market, and relatively clear regulatory expectations, Kalshi has achieved rapid expansion. Currently, the development paths of the two have shown clear differentiation: Polymarket adopts a mixed CLOB architecture with "off-chain matching, on-chain settlement" and a decentralized settlement mechanism, building a globalized, non-custodial high-liquidity market. After returning to the US with compliance, it formed an "onshore + offshore" dual-track operating structure.Kalshi integrates into the traditional financial system, accessing mainstream retail brokerages via API, attracting Wall Street market makers to participate deeply in macro and data-type contract trading. Its products are constrained by traditional regulatory processes, and long-tail demands and sudden events lag relatively behind. Apart from Polymarket and Kalshi, other competitive players in the prediction market field are developing mainly along two paths: First is the compliance distribution path, embedding event contracts into the existing account systems of brokerages or large platforms, relying on channel coverage, clearing capabilities, and institutional trust to build advantages (e.g., ForecastTrader by Interactive Brokers and ForecastEx, and FanDuel Predicts by FanDuel and CME).Second is the on-chain performance and capital efficiency path. Taking the Solana ecosystem's perpetual contract DEX Drift as an example, it added a prediction market module B.E.T (prediction markets) on top of its original product line. The two paths—traditional financial compliance entry and crypto-native performance advantages—together constitute the diversified competitive landscape of the prediction market ecosystem.
Prediction markets appear similar to gambling on the surface and are essentially zero-sum games. However, the core difference lies not in the form, but in whether they possess positive externalities: aggregating scattered information through real-money trading to publicly price real-world events, forming a valuable signal layer. Despite limitations such as entertainment-focused participation, the trend is shifting from gaming to a "Global Truth Layer"—with the access of institutions like CME and Bloomberg, event probabilities have become decision-making metadata that can be directly called by financial and enterprise systems, providing a more timely and quantifiable market-based truth. II. Prediction Agents: Architecture & Strategy Currently, Prediction Market Agents are entering an early practice stage. Their value lies not in "AI predicting more accurately," but in amplifying information processing and execution efficiency in prediction markets. The essence of a prediction market is an information aggregation mechanism, where price reflects the collective judgment of event probability; market inefficiencies in reality stem from information asymmetry, liquidity, and attention constraints. The reasonable positioning of a Prediction Market Agent is Executable Probabilistic Portfolio Management: converting news, rule texts, and on-chain data into verifiable pricing deviations, executing strategies in a faster, more disciplined, and lower-cost manner, and capturing structural opportunities through cross-platform arbitrage and portfolio risk control. An ideal Prediction Market Agent can be abstracted into a four-layer architecture: Information Layer: Aggregates news, social media, on-chain, and official data.Analysis Layer: Uses LLMs and ML to identify mispricing and calculate Edge.Strategy Layer: Converts Edge into positions through the Kelly criterion, staggered entry, and risk control.Execution Layer: Completes multi-market order placement, slippage and Gas optimization, and arbitrage execution, forming an efficient automated closed loop.
The ideal business model design for Prediction Market Agents has different exploration spaces at different levels: Bottom Infrastructure Layer: Provides multi-source real-time data aggregation, Smart Money address libraries, unified prediction market execution engines, and backtesting tools. Charges B2B/B2D fees to obtain stable revenue unrelated to prediction accuracy.Middle Strategy Layer: Precipitates modular strategy components and community-contributed strategies in an open-source or Token-Gated manner, forming a composable strategy ecosystem and achieving value capture.Top Agent Layer: Directly runs live trading through trusted managed Vaults, realizing capabilities with transparent on-chain records and a 20–30% performance fee (plus a small management fee). The ideal Prediction Market Agent is closer to an "AI-driven probabilistic asset management product," gaining returns through long-term disciplined execution and cross-market mispricing gaming, rather than relying on single-time prediction accuracy. The core logic of the diversified revenue structure of "Infrastructure Monetization + Ecosystem Expansion + Performance Participation" is that even if Alpha converges as the market matures, bottom-layer capabilities such as execution, risk control, and settlement still have long-term value, reducing dependence on the single assumption that "AI consistently beats the market." Prediction Market Agent Strategy Analysis: Theoretically, Agents have advantages in high-speed, 24/7, and emotion-free execution. However, in prediction markets, this is often difficult to convert into sustainable Alpha. Its effective application is mainly limited to specific structures, such as automated market making, cross-platform mispricing capture, and information integration of long-tail events. These opportunities are scarce and constrained by liquidity and capital. Market Selection: Not all prediction markets have tradable value. Participation value depends on five dimensions: settlement clarity, liquidity quality, information advantage, time structure, and manipulation risk. It is recommended to prioritize the early stages of new markets, long-tail events with few professional players, and fleeting pricing windows caused by time zone differences; avoid high-heat political events, subjective settlement markets, and varieties with extremely low liquidity.Order Strategy: Adopt strict systematic position management. The prerequisite for entry is that one's own probability judgment is significantly higher than the market implied probability. Positions are determined based on the fractional Kelly criterion (usually 1/10–1/4 Kelly), and single event risk exposure does not exceed 15%, to achieve robust growth with controllable risk, bearable drawdowns, and compoundable advantages in the long run.Arbitrage Strategy: Arbitrage in prediction markets is mainly manifested in four types: cross-platform spread (be wary of settlement differences), Dutch Book arbitrage (high certainty but strict liquidity requirements), settlement arbitrage (relies on execution speed), and correlated asset hedging (limited by structural mismatch). The key to practice lies not in discovering spreads, but in strictly aligning contract definitions and settlement standards to avoid pseudo-arbitrage caused by subtle rule differences.Smart Money Copy-Trading: On-chain "Smart Money" signals are not suitable as a main strategy due to lagging, inducement risks, and sample issues. A more reasonable usage is as a confidence adjustment factor, used to assist core judgments based on information and pricing deviations. III. Noya.ai: Intelligence to Action As an early exploration of Prediction Market Agents, NOYA's core philosophy is "Intelligence That Acts." In on-chain markets, pure analysis and insight are not enough to create value—although dashboards, data analysis, and research tools can help users understand "what might happen," there is still a large amount of manual operation, cross-chain friction, and execution risk between insight and execution. NOYA is built based on this pain point: compressing the complete link of "Research → Form Judgment → Execution → Continuous Monitoring" in the professional investment process into a unified system, enabling intelligence to be directly translated into on-chain action. NOYA achieves this goal by integrating three core levels: Intelligence Layer: Aggregates market data, token analysis, and prediction market signals.Abstraction Layer: Hides complex cross-chain routing; users only need to express Intent.Execution Layer: AI Agents execute operations across chains and protocols based on user authorization. In terms of product form, NOYA supports different participation methods for passive income users, active traders, and prediction market participants. Through designs like Omnichain Execution, AI Agents & Intents, and Vault Abstraction, it modularizes and automates multi-chain liquidity management, complex strategy execution, and risk control. The overall system forms a continuous closed loop: Intelligence → Intent → Execution → Monitoring, achieving efficient, verifiable, and low-friction conversion from insight to execution while ensuring users always maintain control over their assets.
IV. Noya.ai's Product System Evolution Core Cornerstone: Noya Omnichain Vaults Omnivaults is NOYA's capital deployment layer, providing cross-chain, risk-controlled automated yield strategies. Users hand over assets to the system to run continuously across multiple chains and protocols through simple deposit and withdrawal operations, without the need for manual rebalancing or monitoring. The core goal is to achieve stable risk-adjusted returns rather than short-term speculation. Omnivaults cover strategies like standard yield and Loop, clearly divided by asset and risk level, and support optional bonding incentive mechanisms. At the execution level, the system automatically completes cross-chain routing and optimization, and can introduce ZKML to provide verifiable proof for strategy decisions, enhancing the transparency and credibility of automated asset management. The overall design focuses on modularity and composability, supporting future access to more asset types and strategy forms.
NOYA Vault Technical Architecture: Each vault is uniformly registered and managed through the Registry; the AccountingManager is responsible for user shares (ERC-20) and NAV pricing; the bottom layer connects to protocols like Aave and Uniswap through modular Connectors and calculates cross-protocol TVL, relying on Value Oracle (Chainlink + Uniswap v3 TWAP) for price routing and valuation; trading and cross-chain operations are executed by Swap Handler (LiFi); finally, strategy execution is triggered by Keeper Multi-sig, forming a composable and auditable execution closed loop. Future Alpha: Prediction Market Agent NOYA's most imaginative module: the Intelligence layer continuously tracks on-chain fund behavior and off-chain narrative changes, identifying news shocks, emotional fluctuations, and odds mismatches. When probability deviations are found in prediction markets like Polymarket, the Execution layer AI Agent can mobilize vault funds for arbitrage and rebalancing under user authorization. At the same time, Token Intelligence and Prediction Market Copilot provide users with structured token and prediction market analysis, directly converting external information into actionable trading decisions. Prediction Market Intelligence Copilot NOYA is committed to upgrading prediction markets from single-event betting to systematically manageable probabilistic assets. Its core module integrates diverse data such as market implied probability, liquidity structure, historical settlements, and on-chain smart money behavior. It uses Expected Value (EV) and scenario analysis to identify pricing deviations and focuses on tracking position signals of high-win-rate wallets to distinguish informed trading from market noise. Based on this, Copilot supports cross-market and cross-event correlation analysis and transmits real-time signals to AI Agents to drive automated execution such as opening and rebalancing positions, achieving portfolio management and dynamic optimization of prediction markets. Core Strategy Mechanisms include: Multi-source Edge Sourcing: Fuses Polymarket real-time odds, polling data, private and external information flows to cross-verify event implied probabilities, systematically mining information advantages that have not been fully priced in.Prediction Market Arbitrage: Builds probabilistic and structural arbitrage strategies based on pricing differences across different markets, different contract structures, or similar events, capturing odds convergence returns while controlling directional risk.Auto-adjust Positions (Odds-Driven): When odds shift significantly due to changes in information, capital, or sentiment, the AI Agent automatically adjusts position size and direction, achieving continuous optimization in the prediction market rather than a one-time bet. NOYA Intelligence Token Reports NOYA's institutional-grade research and decision hub aims to automate the professional crypto investment research process and directly output decision-level signals usable for real asset allocation. This module presents clear investment stances, comprehensive scores, core logic, key catalysts, and risk warnings in a standardized report structure, continuously updated with real-time market and on-chain data. Unlike traditional research tools, NOYA's intelligence does not stop at static analysis but can be queried, compared, and followed up by AI Agents in natural language. It is directly fed to the execution layer to drive subsequent cross-chain trading, fund allocation, and portfolio management, thereby forming a "Research—Decision—Execution" integrated closed loop, making Intelligence an active signal source in the automated capital operation system. NOYA AI Agent (Voice & Natural Language Driven) The NOYA AI Agent is the platform's execution layer, whose core role is to directly translate user intent and market intelligence into authorized on-chain actions. Users can express goals via text or voice, and the Agent is responsible for planning and executing cross-chain, cross-protocol operations, compressing research and execution into a continuous process. It is a key product form for NOYA to lower the threshold for DeFi and prediction market operations. Users do not need to understand the underlying links, protocols, or transaction paths. They only need to express their goals through natural language or voice to trigger the AI Agent to automatically plan and execute multi-step on-chain operations, achieving "Intent as Execution." Under the premise of full-process user signing and non-custody, the Agent operates in a closed loop of "Intent Understanding → Action Planning → User Confirmation → On-chain Execution → Result Monitoring." It does not replace decision-making but is only responsible for efficient implementation and execution, significantly reducing the friction and threshold of complex financial operations. Trust Moat: ZKML Verifiable Execution Verifiable Execution aims to build a verifiable closed loop for the entire process of strategy, decision-making, and execution. NOYA introduces ZKML as a key mechanism to reduce trust assumptions: strategies are calculated off-chain and verifiable proofs are generated; corresponding fund operations can only be triggered after on-chain verification passes. This mechanism can provide credibility for strategy output without revealing model details and supports derivative capabilities such as verifiable backtesting. Currently, relevant modules are still marked as "under development" in public documents, and engineering details remain to be disclosed and verified. Future 6-Month Product Roadmap Prediction Market Advanced Order Capabilities: Improve strategy expression and execution precision to support Agent-based trading.Expansion to Multi-Prediction Markets: Access more platforms beyond Polymarket to expand event coverage and liquidity.Multi-source Edge Information Collection: Cross-verify with handicap odds to systematically capture underpriced probability deviations.Clearer Token Signals & Advanced Reports: Output trading signals and in-depth on-chain analysis that can directly drive execution.Advanced On-chain DeFi Strategy Combinations: Launch complex strategy structures to improve capital efficiency, returns, and scalability. V. Noya.ai's Ecosystem Growth Currently, Omnichain Vaults are in the early stage of ecosystem development, and their cross-chain execution and multi-strategy framework have been verified. Strategy & Coverage: The platform has integrated mainstream DeFi protocols such as Aave and Morpho, supports cross-chain allocation of stablecoins, ETH, and their derivative assets, and has preliminarily built a layered risk strategy (e.g., Basic Yield vs. Loop Strategy).Development Stage: The current TVL volume is limited. The core goal lies in functional verification (MVP) and risk control framework refinement. The architectural design has strong composability, reserving interfaces for the subsequent introduction of complex assets and advanced Agent scheduling. Incentive System: Kaito Linkage & Space Race Dual Drive NOYA has built a growth flywheel deeply binding content narrative and liquidity anchored on "Real Contribution." Ecosystem Partnership (Kaito Yaps): NOYA landed on Kaito Leaderboards with a composite narrative of "AI × DeFi × Agent," configuring an unlocked incentive pool of 5% of the total supply, and reserving an additional 1% for the Kaito ecosystem. Its mechanism deeply binds content creation (Yaps) with Vault deposits and Bond locking. User weekly contributions are converted into Stars that determine rank and multipliers, thereby synchronously strengthening narrative consensus and long-term capital stickiness at the incentive level.Growth Engine (Space Race): Space Race constitutes NOYA's core growth flywheel, replacing the traditional "capital scale first" airdrop model by using Stars as long-term equity credentials. This mechanism integrates Bond locking bonuses, two-way 10% referral incentives, and content dissemination into a weekly Points system, filtering out long-term users with high participation and strong consensus, and continuously optimizing community structure and token distribution.Community Building (Ambassador): NOYA adopts an invitation-only ambassador program, providing qualified participants with community round participation qualifications and performance rebates based on actual contributions (up to 10%). Currently, Noya.ai has accumulated over 3,000 on-chain users, and its X platform followers have exceeded 41,000, ranking in the top five of the Kaito Mindshare list. This indicates that NOYA has occupied a favorable attention niche in the prediction market and Agent track. In addition, Noya.ai's core contracts have passed dual audits by Code4rena and Hacken, and have accessed Hacken Extractor. VI. Tokenomics Design and Governance NOYA adopts a Single-token ecosystem model, with $NOYA as the sole value carrier and governance vehicle. NOYA employs a Buyback & Burn value capture mechanism. The value generated by the protocol layer in products such as AI Agents, Omnivaults, and prediction markets is captured through mechanisms like staking, governance, access permissions, and buyback & burn, forming a value closed loop of Use → Fee → Buyback, converting platform usage into long-term token value. The project takes Fair Launch as its core principle. It did not introduce angel round or VC investment but completed distribution through a public community round (Launch-Raise) with a low valuation ($10M FDV), Space Race, and airdrops. It deliberately reserves asymmetric upside space for the community, making the chip structure more biased towards active users and long-term participants; team incentives mainly come from long-term locked token shares. Token Distribution: Total Supply: 1 Billion (1,000,000,000) NOYAInitial Float (Low Float): ~12%Valuation & Financing (The Raise): Financing Amount: $1 Million; Valuation (FDV): $10 Million
VII. Prediction Agent Competitive Analysis Currently, the Prediction Market Agent track is still in its early stages with a limited number of projects. Representative ones include Olas (Pearl Prediction Agents), Warden (BetFlix), and Noya.ai. From the perspective of product form and user participation, each represents three types of paths in the current prediction market agent track: Olas (Pearl Prediction Agents): Agent Productization & Runnable Delivery. Participated by "running an automated prediction Agent," encapsulating prediction market trading into a runnable Agent: users inject capital and run it, and the system automatically completes information acquisition, probability judgment, betting, and settlement. The participation method requiring additional installation has relatively limited friendliness for ordinary users.Warden (BetFlix): Interactive Distribution & Consumer-grade Betting Platform. Attracts user participation through a low-threshold, highly entertaining interactive experience. Adopts an interaction and distribution-oriented path, lowering participation costs with gamified and content-based frontends, emphasizing the consumption and entertainment attributes of prediction markets. Its competitive advantage mainly comes from user growth and distribution efficiency, rather than strategy or execution layer depth.NOYA.ai: Centered on "Fund Custody + Strategy Execution on Behalf," abstracting prediction markets and DeFi execution into asset management products through Vaults, providing a participation method with low operation and low mental burden. If the Prediction Market Intelligence and Agent execution modules are superimposed later, it is expected to form a "Research—Execution—Monitoring" integrated workflow
Compared with AgentFi projects that have achieved clear product delivery such as Giza and Almanak, NOYA's DeFi Agent is currently still in a relatively early stage. However, NOYA's differentiation lies in its positioning and entry level: it enters the same execution and asset management narrative track with a fair launch valuation of about $10M FDV, possessing significant valuation discount and growth potential at the current stage. NOYA: An AgentFi project encapsulating asset management centered on Omnichain Vault. Current delivery focus is on infrastructure layers like cross-chain execution and risk control. Upper-layer Agent execution, prediction market capabilities, and ZKML-related mechanisms are still in the development and verification stage.Giza: Can directly run asset management strategies (ARMA, Pulse). Currently has the highest AgentFi product completion.Almanak: Positioned as AI Quant for DeFi, outputting strategy and risk signals through models and quantitative frameworks. Mainly targets professional fund and strategy management needs, emphasizing methodological systematicness and result reproducibility.Theoriq: Centered on multi-agent collaboration (Agent Swarms) strategy and execution framework, emphasizing scalable Agent collaboration systems and medium-to-long-term infrastructure narratives, leaning more towards bottom-layer capability construction.Infinit: An Agentic DeFi terminal leaning towards the execution layer. Through process orchestration of "Intent → Multi-step on-chain operation," it significantly lowers the execution threshold of complex DeFi operations, and users' perception of product value is relatively direct. VIII. Summary: Business, Engineering and Risks Business Logic: NOYA is a rare target in the current market that superimposes multiple narratives of AI Agent × Prediction Market × ZKML, and further combines the product direction of Intent-Driven Execution. At the asset pricing level, it launches with an FDV of approximately $10M, significantly lower than the common $75M–$100M valuation range of similar AI / DeFAI / Prediction related projects, forming a certain structural price difference. Design-wise, NOYA attempts to unify Strategy Execution (Vault / Agent) and Information Advantage (Prediction Market Intelligence) into the same execution framework, and establishes a value capture closed loop through protocol revenue return (fees → buyback & burn). Although the project is still in its early stages, under the combined effect of multi-narrative superposition and low valuation starting point, its risk-return structure is closer to a type of high-odds, asymmetric betting target. Engineering Implementation: At the verifiable delivery level, NOYA's core function currently online is Omnichain Vaults, providing cross-chain asset scheduling, yield strategy execution, and delayed settlement mechanisms. The engineering implementation is relatively foundational. The Prediction Market Intelligence (Copilot), NOYA AI Agent, and ZKML-driven verifiable execution emphasized in its vision are still in the development stage and have not yet formed a complete closed loop on the mainnet. It is not a mature DeFAI platform at this stage. Potential Risks & Key Focus Points: Delivery Uncertainty: The technological span from "Basic Vault" to "All-round Agent" is huge. Be alert to the risk of Roadmap delays or ZKML implementation falling short of expectations.Potential System Risks: Including contract security, cross-chain bridge failures, and oracle disputes specific to prediction markets (such as fuzzy rules leading to inability to adjudicate). Any single point of failure could cause fund loss.
Disclaimer: This article was created with the assistance of AI tools such as ChatGPT-5.2, Gemini 3, and Claude Opus 4.5. The author has tried their best to proofread and ensure the information is true and accurate, but omissions are inevitable. Please understand. It should be specially noted that the crypto asset market generally has a divergence between project fundamentals and secondary market price performance. The content of this article is only for information integration and academic/research exchange, does not constitute any investment advice, and should not be considered as a recommendation to buy or sell any tokens.
免责声明:本文在创作过程中借助了 ChatGPT-5.2, Gemini 3和Claude Opus 4.5等 AI 工具辅助完成,作者已尽力校对并确保信息真实与准确,但仍难免存在疏漏,敬请谅解。需特别提示的是,加密资产市场普遍存在项目基本面与二级市场价格表现背离的情况。本文内容仅用于信息整合与学术/研究交流,不构成任何投资建议,亦不应视为任何代币的买卖推荐。
Aprendizado por Reforço: A Mudança de Paradigma da IA Descentralizada
Autor: 0xjacobzhao | https://linktr.ee/0xjacobzhao Este relatório de pesquisa independente é apoiado pela IOSG Ventures. O processo de pesquisa e escrita foi inspirado pelo trabalho de Sam Lehman (Pantera Capital) em aprendizado por reforço. Agradecimentos a Ben Fielding (Gensyn.ai), Gao Yuan(Gradient), Samuel Dare & Erfan Miahi (Covenant AI), Shashank Yadav (Fraction AI), Chao Wang por suas valiosas sugestões neste artigo. Este artigo busca objetividade e precisão, mas algumas opiniões envolvem julgamento subjetivo e podem conter viés. Agradecemos a compreensão dos leitores.
Este relatório de pesquisa independente é apoiado pela IOSG Ventures, e o processo de pesquisa e escrita foi inspirado pelo relatório de aprendizado por reforço de Sam Lehman (Pantera Capital). Agradecimentos a Ben Fielding (Gensyn.ai), Gao Yuan (Gradient), Samuel Dare & Erfan Miahi (Covenant AI), Shashank Yadav (Fraction AI) e Chao Wang pelas valiosas sugestões feitas a este artigo. Este artigo se esforça para ser objetivo e preciso; algumas opiniões envolvem julgamentos subjetivos e, inevitavelmente, podem haver desvios, pedimos a compreensão dos leitores. A inteligência artificial está passando de um aprendizado estatístico baseado principalmente em "ajuste de padrões" para um sistema de capacidades centrado em "raciocínio estruturado", e a importância do pós-treinamento (Post-training) está rapidamente aumentando. O surgimento do DeepSeek-R1 marca uma virada paradigmática do aprendizado por reforço na era dos grandes modelos, com um consenso na indústria: a pré-treinamento constrói a base de capacidade geral do modelo, e o aprendizado por reforço não é mais apenas uma ferramenta de alinhamento de valor, mas provou ser capaz de melhorar sistematicamente a qualidade da cadeia de raciocínio e a capacidade de tomada de decisão complexa, evoluindo gradualmente para um caminho técnico que melhora continuamente o nível de inteligência.
Este relatório de pesquisa independente é apoiado pela IOSG Ventures. O processo de pesquisa e redação foi inspirado por trabalhos relacionados de Raghav Agarwal (LongHash) e Jay Yu (Pantera). Agradecimentos a Lex Sokolin @ Generative Ventures, Jordan@AIsa, Ivy @PodOur2Cents por suas valiosas sugestões sobre este artigo. O feedback também foi solicitado de equipes de projetos como Nevermined, Skyfire, Virtuals Protocol, AIsa, Heurist, AEON durante o processo de redação. Este artigo busca um conteúdo objetivo e preciso, mas alguns pontos de vista envolvem julgamento subjetivo e podem inevitavelmente conter desvios. A compreensão dos leitores é apreciada.
Este relatório de pesquisa independente é apoiado pela IOSG Ventures, e o processo de escrita foi inspirado pelos relatórios relacionados de Raghav Agarwal@LongHash e Jay Yu@Pantera. Agradecemos as valiosas sugestões feitas por Lex Sokolin @ Generative Ventures, Jordan@AIsa, e Ivy@(支无不言) blog. Durante o processo de redação, também consultamos as opiniões e feedback das equipes de projetos como Nevermined, Skyfire, Virtuals Protocol, AIsa, Heurist, e AEON. Este artigo busca ser objetivo e preciso, embora algumas opiniões envolvam julgamentos subjetivos, o que pode resultar em desvios, pedimos a compreensão dos leitores.
A Evolução Convergente da Automação, IA e Web3 na Indústria de Robótica
Autor: 0xjacobzhao | https://linktr.ee/0xjacobzhao Este relatório de pesquisa independente é apoiado pela IOSG Ventures. O autor agradece a Hans (RoboCup Ásia-Pacífico), Nichanan Kesonpat(1kx), Robert Koschig (1kx), Amanda Young (Collab+Currency), Jonathan Victor (Ansa Research), Lex Sokolin (Generative Ventures), Jay Yu (Pantera Capital), Jeffrey Hu (Hashkey Capital) por seus comentários valiosos, assim como aos colaboradores da OpenMind, BitRobot, peaq, Auki Labs, XMAQUINA, GAIB, Vader, Gradient, Tashi Network e CodecFlow por seu feedback construtivo. Embora todos os esforços tenham sido feitos para garantir objetividade e precisão, algumas percepções inevitavelmente refletem interpretação subjetiva, e os leitores são encorajados a interagir com o conteúdo de forma crítica.
Visões da Indústria de Robôs: A Evolução da Integração entre Automação, Inteligência Artificial e Web3
作者:0xjacobzhao | https://linktr.ee/0xjacobzhao
Este relatório independente é apoiado pela IOSG Ventures, agradecemos a Hans (RoboCup Asia-Pacific), Nichanan Kesonpat(1kx), Robert Koschig (1kx), Amanda Young (Collab+Currency), Jonathan Victor (Ansa Research), Lex Sokolin (Generative Ventures), Jay Yu (Pantera Capital) e Jeffrey Hu (Hashkey Capital) pelas valiosas sugestões feitas a este artigo. Durante a redação, também foram consultadas as opiniões e feedbacks de equipes de projetos como OpenMind, BitRobot, peaq, Auki Labs, XMAQUINA, GAIB, Vader, Gradient, Tashi Network e CodecFlow. Este artigo se esforça para ser objetivo e preciso, embora algumas opiniões envolvam julgamentos subjetivos, o que pode resultar em desvios, pedimos a compreensão dos leitores.
Relatório de Pesquisa Brevis: A Camada Infinita de Computação Verificável do zkVM e Coprocessador de Dados ZK
O paradigma da Computação Verificável—“cálculo fora da cadeia + verificação na cadeia”—tornou-se o modelo computacional universal para sistemas de blockchain. Ele permite que aplicações de blockchain alcancem liberdade computacional quase infinita enquanto mantém a descentralização e a confiança como garantias de segurança essenciais. Provas de conhecimento zero (ZKPs) formam a espinha dorsal deste paradigma, com aplicações principalmente em três direções fundamentais: escalabilidade, privacidade e interoperabilidade & integridade de dados. A escalabilidade foi a primeira aplicação ZK a alcançar a produção, movendo a execução fora da cadeia e verificando provas concisas na cadeia para alta taxa de transferência e escalonamento sem confiança de baixo custo.
Relatório Brevis: Camada de Computação Verificável Infinita com ZKVM e Co-processadores de Dados
“Cálculo fora da cadeia + Verificação na cadeia” é o paradigma de Computação Verificável, que se tornou o modelo de computação genérico para sistemas de blockchain. Ele permite que as aplicações de blockchain obtenham praticamente liberdade computacional ilimitada, mantendo a descentralização e a segurança mínima de confiança. A prova de conhecimento zero (ZKP) é o pilar central deste paradigma, com suas aplicações concentradas principalmente em três direções fundamentais: escalabilidade, privacidade e interoperabilidade & integridade de dados. Dentre elas, a escalabilidade é o cenário onde a tecnologia ZK foi inicialmente implementada, transferindo a execução de transações para fora da cadeia e usando provas curtas para validar resultados na cadeia, alcançando alta TPS e custo baixo de escalabilidade confiável.
Relatório de Pesquisa Cysic: O Caminho ComputeFi da Aceleração de Hardware ZK
Autor:0xjacobzhao | https://linktr.ee/0xjacobzhao Provas de Conhecimento Zero (ZK) — como uma infraestrutura criptográfica e de escalabilidade de próxima geração — estão demonstrando um imenso potencial em escalabilidade de blockchain, computação de privacidade, zkML e verificação entre cadeias. No entanto, o processo de geração de provas é extremamente intensivo em computação e pesado em latência, formando o maior gargalo para a adoção industrial. A aceleração de hardware ZK, portanto, surgiu como um habilitador central. Dentro desse cenário, GPUs se destacam em versatilidade e velocidade de iteração, ASICs buscam eficiência máxima e desempenho em larga escala, enquanto FPGAs servem como um meio flexível combinando programabilidade com eficiência energética. Juntas, elas formam a base de hardware que impulsiona a adoção do mundo real do ZK.
Relatório de Pesquisa Cysic: O Caminho ComputeFi da Aceleração de Hardware ZK
Autor: 0xjacobzhao | https://linktr.ee/0xjacobzhao Provas de conhecimento zero (ZK) como uma nova geração de infraestrutura de criptografia e escalabilidade, já demonstraram um amplo potencial em aplicações emergentes como escalabilidade de blockchain, computação de privacidade, zkML e validação entre cadeias. No entanto, o processo de geração de provas é extremamente computacionalmente intensivo e com alta latência, tornando-se o maior gargalo para a industrialização. A aceleração de hardware ZK surge como um componente central nesse contexto; no caminho de aceleração de hardware ZK, a GPU se destaca pela versatilidade e velocidade de iteração, o ASIC busca eficiência energética extrema e desempenho em larga escala, enquanto o FPGA serve como uma forma intermediária, combinando flexibilidade programável com alta eficiência energética; os três juntos formam a base de hardware que impulsiona a implementação de provas de conhecimento zero.
Relatório de Pesquisa GAIB: A Financeirização em Cadeia da Infraestrutura de IA — RWAiFi
Escrito por 0xjacobzhao | https://linktr.ee/0xjacobzhao À medida que a IA se torna a onda tecnológica de crescimento mais rápido, o poder computacional é visto como uma nova "moeda", com as GPUs se transformando em ativos estratégicos. No entanto, o financiamento e a liquidez permanecem limitados, enquanto as finanças cripto precisam de ativos respaldados por fluxo de caixa real. A tokenização de RWA está surgindo como a ponte. A infraestrutura de IA, combinando hardware de alto valor + fluxos de caixa previsíveis, é vista como o melhor ponto de entrada para RWAs não padronizados — as GPUs oferecem praticidade a curto prazo, enquanto a robótica representa a fronteira a longo prazo. O RWAiFi da GAIB (RWA + IA + DeFi) introduz um novo caminho para a financeirização em cadeia, impulsionando o ciclo da Infra de IA (GPU & Robótica) × RWA × DeFi.
Relatório da GAIB: O caminho para a financeirização em blockchain da infraestrutura de IA - RWAiFi
Autor: 0xjacobzhao | https://linktr.ee/0xjacobzhao À medida que a IA se torna a onda tecnológica de crescimento mais rápida do mundo, a potência computacional é vista como uma nova "moeda", e hardware de alto desempenho como GPUs também está evoluindo para ativos estratégicos. No entanto, há muito tempo, o financiamento e a liquidez desses ativos são limitados. Ao mesmo tempo, as finanças criptográficas precisam acessar ativos de alta qualidade com fluxo de caixa real, e a tokenização de RWA (Ativos do Mundo Real) está se tornando a ponte chave entre as finanças tradicionais e o mercado de criptomoedas. Os ativos de infraestrutura de IA, com suas características de "hardware de alto valor + fluxo de caixa previsível", são amplamente considerados a melhor porta de entrada para ativos não padronizados RWA, onde as GPUs têm o maior potencial de implementação prática, enquanto os robôs representam uma direção de exploração mais a longo prazo. Nesse contexto, o caminho RWAiFi (RWA + IA + DeFi) proposto pela GAIB oferece uma nova solução para "a financeirização em blockchain da infraestrutura de IA", impulsionando o efeito de roda de "Infraestrutura de IA (potência computacional e robôs) x RWA x DeFi".
Do Aprendizado Federado às Redes de Agentes Descentralizados: Uma Análise sobre ChainOpera
Escrito por 0xjacobzhao | https://linktr.ee/0xjacobzhao Em nosso relatório de junho "O Santo Graal da IA Cripto: Exploração Fronteiriça do Treinamento Descentralizado", discutimos o Aprendizado Federado—um paradigma de "descentralização controlada" posicionado entre treinamento distribuído e treinamento totalmente descentralizado. Seu princípio central é manter os dados locais enquanto agrega parâmetros centralmente, um design particularmente adequado para indústrias sensíveis à privacidade e pesadas em conformidade, como saúde e finanças.
Da aprendizagem federada às redes de agentes descentralizadas: uma análise do projeto ChainOpera
Em nosso relatório de pesquisa de junho (O Santo Graal da Cripto IA: Explorando as Fronteiras do Treinamento Descentralizado), mencionamos o aprendizado federado, uma solução de "descentralização controlada" entre o treinamento distribuído e o descentralizado. Sua abordagem central é reter dados localmente e agregar parâmetros centralmente, atendendo aos requisitos de privacidade e conformidade em saúde, finanças e outras áreas. Ao mesmo tempo, destacamos consistentemente a ascensão das redes de agentes em relatórios anteriores. Seu valor reside em permitir a autonomia multiagente e a divisão de trabalho para concluir tarefas complexas de forma colaborativa, impulsionando a evolução de "grandes modelos" para "ecossistemas multiagentes".
Relatório de Pesquisa OpenLedge: Monetização de dados e modelos na cadeia de IA
1. Introdução | A transição da camada de modelo da Crypto AI Dados, modelos e poder de computação são os três principais elementos da infraestrutura de IA, comparáveis a combustível (dados), motor (modelo) e energia (poder de computação), todos indispensáveis. Semelhante ao caminho de evolução da infraestrutura da indústria de IA tradicional, o campo da Crypto AI também passou por fases semelhantes. No início de 2024, o mercado foi dominado por projetos de GPU descentralizados (Akash, Render, io.net, etc.), enfatizando amplamente a lógica de crescimento extensivo de 'combinação de poder de computação'. Ao entrar em 2025, o foco da indústria começou a se deslocar gradualmente para as camadas de modelo e dados, marcando a transição da Crypto AI de uma competição por recursos subjacentes para uma construção de médio porte mais sustentável e de valor aplicado.
Relatório de Pesquisa OpenLedger: Uma Cadeia de IA para Dados e Modelos Monetizáveis
1. Introdução | A Mudança de Camada do Modelo em Crypto AI Dados, modelos e computação formam os três pilares centrais da infraestrutura de IA—comparáveis a combustível (dados), motor (modelo) e energia (computação)—todos indispensáveis. Assim como a evolução da infraestrutura na indústria de IA tradicional, o setor de Crypto AI passou por uma trajetória semelhante. No início de 2024, o mercado foi dominado por projetos de GPU descentralizados (como Akash, Render e io.net), caracterizados por um modelo de crescimento pesado em recursos focado em poder computacional bruto. No entanto, até 2025, a atenção da indústria começou a mudar gradualmente para as camadas de modelo e dados, marcando uma transição da competição de infraestrutura de baixo nível para um desenvolvimento de camada intermediária mais sustentável e orientado a aplicações.
Estratégias de Rendimento Pendle Reveladas: O Paradigma AgentFi do Pulse
Por 0xjacobzhao | https://linktr.ee/0xjacobzhao Sem dúvida, Pendle é um dos protocolos DeFi mais bem-sucedidos no ciclo atual de criptomoedas. Enquanto muitos protocolos pararam devido a secas de liquidez e narrativas em declínio, Pendle se destacou através de seu mecanismo único de divisão e negociação de rendimento, tornando-se o "local de descoberta de preços" para ativos que geram rendimento. Ao integrar-se profundamente com stablecoins, LSTs/LRTs e outros ativos geradores de rendimento, assegurou sua posição como a "infraestrutura de taxa de rendimento DeFi" fundamental.
Do zkVM ao Mercado de Provas Abertas: Uma Análise do RISC Zero e Boundless
Na blockchain, a criptografia é a base fundamental da segurança e confiança. As Provas de Conhecimento Zero (ZK) podem comprimir qualquer computação complexa fora da cadeia em uma prova sucinta que pode ser verificada de forma eficiente na cadeia—sem depender da confiança de terceiros—enquanto também permite ocultar entradas de forma seletiva para preservar a privacidade. Com sua combinação de verificação eficiente, universalidade e privacidade, o ZK se tornou uma solução chave em casos de uso de escalabilidade, privacidade e interoperabilidade. Embora ainda haja desafios, como o alto custo da geração de provas e a complexidade do desenvolvimento de circuitos, a viabilidade de engenharia do ZK e o grau de adoção já superaram outras abordagens, tornando-o o framework mais amplamente adotado para computação confiável.
Faça login para explorar mais conteúdos
Explore as últimas notícias sobre criptomoedas
⚡️ Participe das discussões mais recentes sobre criptomoedas