Binance Square

quantumcomputers

124,032 views
192 Discussing
Bitcoin Buyer
·
--
Will Quantum Computers Destroy Crypto? The Truth ExplainedQuantum Computer Explained In Simple Words: A normal computer uses bits, each bit is either 0 or 1, however quantum computers use qubits. A qubit can be 0 or 1 or both at the same time(this third scenario is called superposition). On top of that, qubits can be linked together in a weird way called Entanglement, meaning changing one can instantly affect the other. In simple words, A normal computer tries every door one by one, while a quantum computer can try many doors at the same time. That’s why they’re powerful — for certain types of problems. However they are only good at specific mathematical problems, not everything. Do Quantum Computers Exist Right Now? Yes, companies like Google, IBM, Microsoft, have built early quantum machines. However, they are extremely unstable, make a lot of errors and require near absolute-zero temperatures. So technically, they are not practical yet. So we are likely decades away from real quantum computers. Why Do People Say Quantum Computers Threaten Crypto? Most cryptocurrencies($BTC , $ETH ) rely on Elliptic Curve Cryptography (ECC) and Public-Key Cryptography. A quantum algorithm called Shor’s Algorithm could theoretically derive private keys from public keys and break digital signatures. If that happens, someone could steal coins, wallet security would collapse and Blockchain trust would be shaken. It’s Not Just Crypto — It’s Everything If quantum computers break encryption, they don’t just attack Bitcoin. They would also break: i) Online banking systems ii) Credit cards iii) Military communication iv) Government data v) HTTPS websites vi) Email encryption vii) Cloud security viii) VPN systems ix) Stock exchanges x) Nuclear facility systems Basically: the entire digital world. The Myth: “Quantum Will Kill Bitcoin” This idea is exaggerated because: i) Most Bitcoin addresses don’t expose their public key until you spend. If you never move coins, they’re harder to attack. ii) Developers can upgrade crypto. Crypto can move to Post-quantum cryptography and Quantum-resistant signature schemes. iii) The world will see it coming. Building a large-scale quantum computer cannot be hidden. It would take years of public research. There would be warning signs. Possible Solutions: The good news is that developers are already working on the solution before it even hits us. Here are some of possible solutions: i) Post-Quantum Cryptography (PQC) These are encryption methods designed to resist quantum attacks. The U.S. National Institute of Standards and Technology (NIST) is already standardizing quantum-resistant algorithms. ii) Migration Strategy If quantum computers get close to dangerous levels, Users could transfer coins to quantum-safe wallets Should Crypto Investors Be Worried? Right now, we have more serious things to worry about like regulation of cryptocurrencies, market cycles, liquidity, ensuring proper security of your accounts, poor risk management. There is a famous saying, “Don’t Count Your Chickens Before They Hatch”. So this quantum risk has not even hatched and we are counting it. Final Thoughts: Quantum computers are real and very powerful in theory. However, they are most likely to advance medicine, improve material science and optimize logistics. They are very unlikely to come into wrong hands because they could be more precious than nuclear technology. #quantumcomputers

Will Quantum Computers Destroy Crypto? The Truth Explained

Quantum Computer Explained In Simple Words:
A normal computer uses bits, each bit is either 0 or 1, however quantum computers use qubits. A qubit can be 0 or 1 or both at the same time(this third scenario is called superposition). On top of that, qubits can be linked together in a weird way called Entanglement, meaning changing one can instantly affect the other.
In simple words, A normal computer tries every door one by one, while a quantum computer can try many doors at the same time. That’s why they’re powerful — for certain types of problems. However they are only good at specific mathematical problems, not everything.
Do Quantum Computers Exist Right Now?
Yes, companies like Google, IBM, Microsoft, have built early quantum machines. However, they are extremely unstable, make a lot of errors and require near absolute-zero temperatures. So technically, they are not practical yet. So we are likely decades away from real quantum computers.
Why Do People Say Quantum Computers Threaten Crypto?
Most cryptocurrencies($BTC , $ETH ) rely on Elliptic Curve Cryptography (ECC) and Public-Key Cryptography. A quantum algorithm called Shor’s Algorithm could theoretically derive private keys from public keys and break digital signatures. If that happens, someone could steal coins, wallet security would collapse and Blockchain trust would be shaken.

It’s Not Just Crypto — It’s Everything
If quantum computers break encryption, they don’t just attack Bitcoin. They would also break:
i) Online banking systems

ii) Credit cards

iii) Military communication

iv) Government data

v) HTTPS websites

vi) Email encryption

vii) Cloud security

viii) VPN systems

ix) Stock exchanges

x) Nuclear facility systems

Basically: the entire digital world.

The Myth: “Quantum Will Kill Bitcoin”

This idea is exaggerated because:

i) Most Bitcoin addresses don’t expose their public key until you spend.

If you never move coins, they’re harder to attack.

ii) Developers can upgrade crypto.

Crypto can move to Post-quantum cryptography and Quantum-resistant signature schemes.

iii) The world will see it coming.

Building a large-scale quantum computer cannot be hidden. It would take years of public research. There would be warning signs.

Possible Solutions:

The good news is that developers are already working on the solution before it even hits us. Here are some of possible solutions:

i) Post-Quantum Cryptography (PQC)

These are encryption methods designed to resist quantum attacks. The U.S. National Institute of Standards and Technology (NIST) is already standardizing quantum-resistant algorithms.

ii) Migration Strategy

If quantum computers get close to dangerous levels, Users could transfer coins to quantum-safe wallets

Should Crypto Investors Be Worried?

Right now, we have more serious things to worry about like regulation of cryptocurrencies, market cycles, liquidity, ensuring proper security of your accounts, poor risk management. There is a famous saying, “Don’t Count Your Chickens Before They Hatch”. So this quantum risk has not even hatched and we are counting it.

Final Thoughts:

Quantum computers are real and very powerful in theory. However, they are most likely to advance medicine, improve material science and optimize logistics. They are very unlikely to come into wrong hands because they could be more precious than nuclear technology.
#quantumcomputers
Why Quantum Fears Around Bitcoin Are PrematureQuantum computing is often framed as an existential threat to Bitcoin, but that framing skips over how far the technology still has to go. Key Takeaways Quantum computing is a long-term issue, not an immediate threat to Bitcoin.Current quantum hardware is far too weak to break Bitcoin’s security.Bitcoin can gradually upgrade its cryptography if the risk becomes real. An analysis from digital asset manager CoinShares suggests that the discussion is less about imminent danger and more about long-term preparation for a system that now safeguards trillions of dollars in value. Where Bitcoin’s defenses actually stand Bitcoin’s security model is more nuanced than many critics assume. Most coins sit in modern address types that keep public keys hidden until funds are spent. Without access to those public keys, even an advanced attacker would have nothing to exploit. Only a narrow slice of older addresses behaves differently, which naturally limits the scale of any potential vulnerability. The real constraint is not theory, but hardware. To threaten Bitcoin in practice, quantum computers would need millions of stable, error-corrected qubits. Today’s machines operate with a fraction of that capacity and struggle with reliability. Even optimistic projections place such capabilities well into the future, leaving a wide window for the Bitcoin ecosystem to adapt. Why time works in Bitcoin’s favor That extended timeline matters because Bitcoin is not frozen in place. Its open-source structure allows developers to introduce new cryptographic standards as threats evolve. If quantum computing advances to a meaningful level, quantum-resistant signature schemes can be rolled out through gradual network upgrades rather than emergency fixes. Even under a scenario where quantum progress accelerates, analysts expect no abrupt shock to the market. Any coins that could become exposed would do so slowly, giving holders time to move funds. As a result, liquidity effects would likely unfold over years, not days or weeks. The risk of moving too fast CoinShares also flags a different danger: acting prematurely. Forcing major protocol changes before they are necessary could introduce bugs, complexity, or network fragmentation. A cautious, phased approach allows Bitcoin to strengthen its defenses without creating new problems in the process. Quantum computing remains a topic worth monitoring, but not one that demands alarm. The technology is still distant, Bitcoin’s current exposure is limited, and the network is built to evolve. For now, quantum risk sits firmly in the category of long-term engineering challenges rather than immediate threats to Bitcoin’s security or credibility. #quantumcomputers

Why Quantum Fears Around Bitcoin Are Premature

Quantum computing is often framed as an existential threat to Bitcoin, but that framing skips over how far the technology still has to go.

Key Takeaways
Quantum computing is a long-term issue, not an immediate threat to Bitcoin.Current quantum hardware is far too weak to break Bitcoin’s security.Bitcoin can gradually upgrade its cryptography if the risk becomes real.
An analysis from digital asset manager CoinShares suggests that the discussion is less about imminent danger and more about long-term preparation for a system that now safeguards trillions of dollars in value.
Where Bitcoin’s defenses actually stand
Bitcoin’s security model is more nuanced than many critics assume. Most coins sit in modern address types that keep public keys hidden until funds are spent. Without access to those public keys, even an advanced attacker would have nothing to exploit. Only a narrow slice of older addresses behaves differently, which naturally limits the scale of any potential vulnerability.
The real constraint is not theory, but hardware. To threaten Bitcoin in practice, quantum computers would need millions of stable, error-corrected qubits. Today’s machines operate with a fraction of that capacity and struggle with reliability. Even optimistic projections place such capabilities well into the future, leaving a wide window for the Bitcoin ecosystem to adapt.
Why time works in Bitcoin’s favor
That extended timeline matters because Bitcoin is not frozen in place. Its open-source structure allows developers to introduce new cryptographic standards as threats evolve. If quantum computing advances to a meaningful level, quantum-resistant signature schemes can be rolled out through gradual network upgrades rather than emergency fixes.
Even under a scenario where quantum progress accelerates, analysts expect no abrupt shock to the market. Any coins that could become exposed would do so slowly, giving holders time to move funds. As a result, liquidity effects would likely unfold over years, not days or weeks.
The risk of moving too fast
CoinShares also flags a different danger: acting prematurely. Forcing major protocol changes before they are necessary could introduce bugs, complexity, or network fragmentation. A cautious, phased approach allows Bitcoin to strengthen its defenses without creating new problems in the process.
Quantum computing remains a topic worth monitoring, but not one that demands alarm. The technology is still distant, Bitcoin’s current exposure is limited, and the network is built to evolve. For now, quantum risk sits firmly in the category of long-term engineering challenges rather than immediate threats to Bitcoin’s security or credibility.
#quantumcomputers
·
--
I see that many people on the internet are saying that Satoshi Bitcoin is dead because quantum computers are coming. They say Bitcoin is finished. But it is not directly possible that quantum can destroy Bitcoin. If that were true,then WhatsApp,Banks and credit cards would also be finished. People have been saying for the past 10 years that quantum computer will destroy Bitcoin.If quantum breaks Bitcoin,it will also breaks banks, credit cards, and the entire security system. Bitcoin is not dead.Fear is recycled. $BTC {spot}(BTCUSDT) #quantumcomputers
I see that many people on the internet are saying that Satoshi Bitcoin is dead because quantum computers are coming.
They say Bitcoin is finished.
But it is not directly possible that quantum can destroy Bitcoin.
If that were true,then WhatsApp,Banks and credit cards would also be finished.
People have been saying for the past 10 years that quantum computer will destroy Bitcoin.If quantum breaks Bitcoin,it will also breaks banks, credit cards, and the entire security system.
Bitcoin is not dead.Fear is recycled.

$BTC

#quantumcomputers
·
--
⚡🖥️ MICHAEL SAYLOR ANNOUNCES THE “BITCOIN SECURITY PROGRAM” AGAINST THE THREATS OF QUANTUM COMPUTING 🖥️⚡ Michael Saylor, co-founder and executive chairman of Strategy, stated that the company will launch a Bitcoin Security Program in collaboration with the global cybersecurity and cryptocurrency community. The goal is to address one of the most complex technological challenges of the coming years: the threat of quantum computing to the security of the Bitcoin network. Quantum computers, still in their early stages, could one day be able to decrypt the cryptographic algorithms that protect transactions and digital wallets. Saylor intends to lead a collective effort to anticipate this risk, coordinating researchers, developers, and technology institutions to develop “quantum-resistant” solutions. The program aims to strengthen the cryptographic foundations of Bitcoin and promote shared security standards among the blockchain industry and leading global experts in cybersecurity. With this initiative, Strategy aims to position itself as a leader in the long-term protection of Bitcoin, reaffirming its confidence in the network as a digital store of value even in the era of quantum computing. #BreakingCryptoNews #MichaelSaylor #strategy #quantumcomputers #bitcoin $BTC
⚡🖥️ MICHAEL SAYLOR ANNOUNCES THE “BITCOIN SECURITY PROGRAM” AGAINST THE THREATS OF QUANTUM COMPUTING 🖥️⚡

Michael Saylor, co-founder and executive chairman of Strategy, stated that the company will launch a Bitcoin Security Program in collaboration with the global cybersecurity and cryptocurrency community.

The goal is to address one of the most complex technological challenges of the coming years: the threat of quantum computing to the security of the Bitcoin network.
Quantum computers, still in their early stages, could one day be able to decrypt the cryptographic algorithms that protect transactions and digital wallets.

Saylor intends to lead a collective effort to anticipate this risk, coordinating researchers, developers, and technology institutions to develop “quantum-resistant” solutions.
The program aims to strengthen the cryptographic foundations of Bitcoin and promote shared security standards among the blockchain industry and leading global experts in cybersecurity.

With this initiative, Strategy aims to position itself as a leader in the long-term protection of Bitcoin, reaffirming its confidence in the network as a digital store of value even in the era of quantum computing.
#BreakingCryptoNews #MichaelSaylor #strategy #quantumcomputers #bitcoin $BTC
·
--
Why Quantum Computing Isn’t a Serious Risk for Bitcoin Yet: New research says today’s quantum computers are far too weak to threaten Bitcoin’s cryptography, leaving the network years to prepare. Quantum computing may not be as much of an immediate threat to Bitcoin as some have warned, and any real risk might still be years away. That’s according to a new research note from digital asset investment firm CoinShares, which argues that while Bitcoin’s cryptography is theoretically vulnerable to future quantum advances, current technology falls far short of posing a practical danger. “Bitcoin’s quantum vulnerability is not an immediate crisis but a foreseeable engineering consideration, with ample time for adaptation,“ researchers at the firm wrote. Quantum attacks involve powerful quantum computers breaking cryptographic keys that secure Bitcoin or other blockchains, enabling attackers to derive private keys from public information. Such attacks that are aimed at Bitcoin are not imminent because breaking its core cryptography would require quantum machines far beyond anything that exists today, the researchers argue. “From a cryptography and engineering standpoint, the quantum threat to Bitcoin remains a medium-to-long-term risk, not an imminent crisis,” Andy Zhou, co-founder and CEO of blockchain security firm BlockSec, told Decrypt. “Even under optimistic assumptions about quantum progress, the industry still has meaningful time to prepare and upgrade.” The idea behind post-quantum cryptography has been “under rigorous international standardization for years,” Zhou explained, citing how the U.S. National Institute of Standards and Technology (NIST) had already released its first set of finalized post-quantum cryptography standards in 2024. The standards include “several quantum-resistant encryption and signature algorithms that are ready for use,” and also have additional algorithms under backup consideration and broader deployment guidance, he explained. #QuantumCrypto #quantumcomputers
Why Quantum Computing Isn’t a Serious Risk for Bitcoin Yet:
New research says today’s quantum computers are far too weak to threaten Bitcoin’s cryptography, leaving the network years to prepare.

Quantum computing may not be as much of an immediate threat to Bitcoin as some have warned, and any real risk might still be years away.

That’s according to a new research note from digital asset investment firm CoinShares, which argues that while Bitcoin’s cryptography is theoretically vulnerable to future quantum advances, current technology falls far short of posing a practical danger.

“Bitcoin’s quantum vulnerability is not an immediate crisis but a foreseeable engineering consideration, with ample time for adaptation,“ researchers at the firm wrote.

Quantum attacks involve powerful quantum computers breaking cryptographic keys that secure Bitcoin or other blockchains, enabling attackers to derive private keys from public information.

Such attacks that are aimed at Bitcoin are not imminent because breaking its core cryptography would require quantum machines far beyond anything that exists today, the researchers argue.

“From a cryptography and engineering standpoint, the quantum threat to Bitcoin remains a medium-to-long-term risk, not an imminent crisis,” Andy Zhou, co-founder and CEO of blockchain security firm BlockSec, told Decrypt. “Even under optimistic assumptions about quantum progress, the industry still has meaningful time to prepare and upgrade.”

The idea behind post-quantum cryptography has been “under rigorous international standardization for years,” Zhou explained, citing how the U.S. National Institute of Standards and Technology (NIST) had already released its first set of finalized post-quantum cryptography standards in 2024.

The standards include “several quantum-resistant encryption and signature algorithms that are ready for use,” and also have additional algorithms under backup consideration and broader deployment guidance, he explained.
#QuantumCrypto #quantumcomputers
·
--
🖥️⚡ ETHEREUM IS PREPARING FOR THE QUANTUM ERA BY 2030 🖥️⚡ The Ethereum Foundation has elevated post-quantum security to a strategic priority, creating a dedicated team and funding research for over 2 million dollars to make consensus resistant to quantum computers by 2030. The goal is to gradually migrate to post-quantum signatures (hash-based, lattice-based, zk-STARK), without downtime or loss of funds, leveraging the already existing multi-client devnet with clients like Lighthouse and Grandine. The new head of the PQ team, Thomas Coratger, explains that Ethereum is developing a post-quantum consensus roadmap, integrated with the “Lean Ethereum” path, which aims to maximize simplicity, security, and scalability while keeping the network future-proof. Vitalik Buterin estimates a 20% chance that quantum machines capable of breaking current encryption will emerge before 2030, which is why the migration cannot be postponed until the last moment. The plan includes: new quantum-resistant cryptographic primitives, abstract accounts, and quantum-safe smart contract wallets, along with emergency procedures in case a “quantum shock” suddenly affects ECDSA. Ethereum aims to reach 2030 with an operational post-quantum consensus, turning the quantum risk into a long-term competitive advantage for the entire ecosystem. #BreakingCryptoNews #Ethereum #quantumcomputers $ETH
🖥️⚡ ETHEREUM IS PREPARING FOR THE QUANTUM ERA BY 2030 🖥️⚡

The Ethereum Foundation has elevated post-quantum security to a strategic priority, creating a dedicated team and funding research for over 2 million dollars to make consensus resistant to quantum computers by 2030.

The goal is to gradually migrate to post-quantum signatures (hash-based, lattice-based, zk-STARK), without downtime or loss of funds, leveraging the already existing multi-client devnet with clients like Lighthouse and Grandine.

The new head of the PQ team, Thomas Coratger, explains that Ethereum is developing a post-quantum consensus roadmap, integrated with the “Lean Ethereum” path, which aims to maximize simplicity, security, and scalability while keeping the network future-proof.

Vitalik Buterin estimates a 20% chance that quantum machines capable of breaking current encryption will emerge before 2030, which is why the migration cannot be postponed until the last moment.
The plan includes: new quantum-resistant cryptographic primitives, abstract accounts, and quantum-safe smart contract wallets, along with emergency procedures in case a “quantum shock” suddenly affects ECDSA.

Ethereum aims to reach 2030 with an operational post-quantum consensus, turning the quantum risk into a long-term competitive advantage for the entire ecosystem.
#BreakingCryptoNews #Ethereum #quantumcomputers $ETH
Just in: Michael Saylor announces @MicroStrategy is launching a Bitcoin Security Program. It will coordinate with global cybersecurity & crypto leaders to defend against future quantum computing threats. The future of BTC security starts now. #bitcoin #quantumcomputers #CyberSecurity
Just in: Michael Saylor announces @MicroStrategy is launching a Bitcoin Security Program. It will coordinate with global cybersecurity & crypto leaders to defend against future quantum computing threats. The future of BTC security starts now.

#bitcoin #quantumcomputers #CyberSecurity
·
--
Many of people thinks that quantum computer can destroy $BTC crypto what do you think? I make research on it Inshallah ❤️ #quantumcomputers
Many of people thinks that quantum computer can destroy $BTC crypto what do you think? I make research on it Inshallah ❤️
#quantumcomputers
Vitalik Buterin warns QUANTUM COMPUTERS could threaten Bitcoin and Ethereum by 2028. -> He said that there’s a 20% risk that quantum computers could break Bitcoin and Ethereum before 2030. -> He urges post-quantum upgrades now, not later. -> Ethereum is moving fast with a $1M prize, a special team, and account abstraction. -> Bitcoin is slower due to its strict consensus process. #TSLALinkedPerpsOnBinance #quantumcomputers #Vitalik $BTC {spot}(BTCUSDT) $ETH {spot}(ETHUSDT)
Vitalik Buterin warns QUANTUM COMPUTERS could threaten Bitcoin and Ethereum by 2028.

-> He said that there’s a 20% risk that quantum computers could break Bitcoin and Ethereum before 2030.
-> He urges post-quantum upgrades now, not later.
-> Ethereum is moving fast with a $1M prize, a special team, and account abstraction.
-> Bitcoin is slower due to its strict consensus process.
#TSLALinkedPerpsOnBinance #quantumcomputers #Vitalik $BTC
$ETH
Quantum Computers and Cryptography: Is Bitcoin at Risk?Quantum computers are considered one of the most promising technologies of the future. They promise computing power far beyond that of classical computers. However, this revolution could also pose a threat to modern cryptography—and thus to systems like Bitcoin. The critical question is: Can quantum computers break Bitcoin? And if so, will Bitcoin need an upgrade? How Quantum Computers Threaten Cryptography The security of modern cryptography relies on mathematical problems that are difficult for classical computers to solve. Bitcoin primarily uses two algorithms: 1. SHA-256 (for hash functions) 2. ECDSA (Elliptic Curve Digital Signature Algorithm, for digital signatures) Quantum computers could specifically attack ECDSA using Shor’s Algorithm, which can break elliptic curve cryptography. In theory, this would allow an attacker to derive private keys from public addresses—a nightmare scenario for Bitcoin. Does This Also Affect SHA-256? Fortunately, SHA-256 (and similar hash functions) are only minimally vulnerable to quantum attacks. Grover’s Algorithm could theoretically cut search times in half, but even then, attacking Bitcoin mining or transaction hashes would be extremely resource-intensive. Is Bitcoin Really at Risk? The good news: Not anytime soon. 1. Quantum computers are not yet powerful enough - Current quantum computers have only a few error-prone qubits. 1. Breaking ECDSA would require thousands of error-corrected qubits—something that is still years or decades away. 2. Bitcoin transactions are often "quantum-resistant" - As long as Bitcoin addresses are used only once (as recommended), the risk is low. - Only publicly known addresses (e.g., unused funds in old wallets) would be vulnerable. 3. The community can adapt - If quantum computers become a real threat, Bitcoin can upgrade to quantum-resistant cryptography (e.g., Lamport signatures or lattice-based cryptography). Will Bitcoin Need an Upgrade? Long-term: Yes. Once quantum computers become practically viable, Bitcoin will need to update its signature algorithms. However, progress is slow enough that the community will have time to respond. Possible Solutions: - Post-quantum cryptography (e.g., XMSS, SPHINCS+) - Schnorr signatures (already part of Bitcoin’s protocol, offering better scalability and serving as a foundation for quantum-resistant upgrades) - Hybrid systems (combining ECDSA with quantum-resistant signatures) Conclusion: Bitcoin is (Still) Safe Quantum computers pose a potential threat, but not an immediate one. Bitcoin developers have time to prepare, and promising quantum-resistant solutions already exist. Bitcoin won’t be cracked overnight—but the community must stay vigilant. Once quantum computing makes significant advances, an upgrade will be necessary. Until then, the network remains secure. Further Topics: - Post-quantum cryptography - Quantum-Resistant Ledger (QRL) - Bitcoin Improvement Proposals (BIPs) for quantum security #quantumcomputers #Cryptography $BTC {spot}(BTCUSDT)

Quantum Computers and Cryptography: Is Bitcoin at Risk?

Quantum computers are considered one of the most promising technologies of the future. They promise computing power far beyond that of classical computers. However, this revolution could also pose a threat to modern cryptography—and thus to systems like Bitcoin.
The critical question is: Can quantum computers break Bitcoin? And if so, will Bitcoin need an upgrade?
How Quantum Computers Threaten Cryptography
The security of modern cryptography relies on mathematical problems that are difficult for classical computers to solve. Bitcoin primarily uses two algorithms:
1. SHA-256 (for hash functions)
2. ECDSA (Elliptic Curve Digital Signature Algorithm, for digital signatures)
Quantum computers could specifically attack ECDSA using Shor’s Algorithm, which can break elliptic curve cryptography. In theory, this would allow an attacker to derive private keys from public addresses—a nightmare scenario for Bitcoin.
Does This Also Affect SHA-256?
Fortunately, SHA-256 (and similar hash functions) are only minimally vulnerable to quantum attacks. Grover’s Algorithm could theoretically cut search times in half, but even then, attacking Bitcoin mining or transaction hashes would be extremely resource-intensive.
Is Bitcoin Really at Risk?
The good news: Not anytime soon.
1. Quantum computers are not yet powerful enough
- Current quantum computers have only a few error-prone qubits.
1. Breaking ECDSA would require thousands of error-corrected qubits—something that is still years or decades away.
2. Bitcoin transactions are often "quantum-resistant"
- As long as Bitcoin addresses are used only once (as recommended), the risk is low.
- Only publicly known addresses (e.g., unused funds in old wallets) would be vulnerable.
3. The community can adapt
- If quantum computers become a real threat, Bitcoin can upgrade to quantum-resistant cryptography (e.g., Lamport signatures or lattice-based cryptography).
Will Bitcoin Need an Upgrade? Long-term: Yes.
Once quantum computers become practically viable, Bitcoin will need to update its signature algorithms. However, progress is slow enough that the community will have time to respond.
Possible Solutions:
- Post-quantum cryptography (e.g., XMSS, SPHINCS+)
- Schnorr signatures (already part of Bitcoin’s protocol, offering better scalability and serving as a foundation for quantum-resistant upgrades)
- Hybrid systems (combining ECDSA with quantum-resistant signatures)
Conclusion: Bitcoin is (Still) Safe
Quantum computers pose a potential threat, but not an immediate one. Bitcoin developers have time to prepare, and promising quantum-resistant solutions already exist.
Bitcoin won’t be cracked overnight—but the community must stay vigilant. Once quantum computing makes significant advances, an upgrade will be necessary. Until then, the network remains secure.

Further Topics:
- Post-quantum cryptography
- Quantum-Resistant Ledger (QRL)
- Bitcoin Improvement Proposals (BIPs) for quantum security
#quantumcomputers #Cryptography
$BTC
·
--
Bullish
🔥 The First Quantum-Ready Chain? $ICP . And Nobody’s Talking About It. Everyone thinks #quantumcomputers will destroy crypto. Wrong. Quantum will only destroy chains built on old, static private keys — Bitcoin, Ethereum, Solana, Avalanche, Cosmos, Cardano… basically the whole market. But #icp is different. ✨ #ICP. runs on chain-key cryptography — rotating, distributed, threshold-secured. No single private key. No single point to attack. And it can upgrade its cryptography live without breaking smart contracts or wallets. That’s not an advantage… That’s quantum-era survival. But here’s the twist nobody sees: Quantum won’t just protect #ICPCoin — Quantum will supercharge it. 🚀 Quantum boosts: • threshold signatures • randomness • zk-proofs • cross-chain signing • MPC • AI inference inside canisters And because ICP is the only full-stack decentralized cloud, quantum compute plugs directly into the network — not bolted on like other chains. Most blockchains will panic-fork, patch, or outright fail when quantum arrives. @InternetComputer won’t. It was designed from day one to evolve. That’s why the upside is massive. #InternetComputer isn’t just another blockchain — it’s a quantum-secure, quantum-accelerated decentralized cloud. We’re early. Very early. 🚀 {spot}(ICPUSDT)
🔥 The First Quantum-Ready Chain? $ICP . And Nobody’s Talking About It.

Everyone thinks #quantumcomputers will destroy crypto.
Wrong. Quantum will only destroy chains built on old, static private keys —
Bitcoin, Ethereum, Solana, Avalanche, Cosmos, Cardano… basically the whole market.

But #icp is different.

#ICP. runs on chain-key cryptography — rotating, distributed, threshold-secured.
No single private key. No single point to attack.
And it can upgrade its cryptography live without breaking smart contracts or wallets.

That’s not an advantage…
That’s quantum-era survival.

But here’s the twist nobody sees:

Quantum won’t just protect #ICPCoin
Quantum will supercharge it. 🚀

Quantum boosts:
• threshold signatures
• randomness
• zk-proofs
• cross-chain signing
• MPC
• AI inference inside canisters

And because ICP is the only full-stack decentralized cloud, quantum compute plugs directly into the network — not bolted on like other chains.

Most blockchains will panic-fork, patch, or outright fail when quantum arrives.
@Internet Computer won’t. It was designed from day one to evolve.

That’s why the upside is massive.
#InternetComputer isn’t just another blockchain —
it’s a quantum-secure, quantum-accelerated decentralized cloud.

We’re early. Very early. 🚀
## ⚡ The Perfect Storm: Why NOW is the Quantum-AI Moment:Becoming the foundation of the next cryptoThe quantum threat isn't coming - it's here. Smart investors are already positioning themselves in quantum-resistant cryptocurrencies that will survive and thrive in the post-quantum world. ### 🥇 **Top Quantum-Resistant Champions** #### **1. Algorand (ALGO)** - The Quantum Pioneer - **Quantum Defense**: Algorand leads with Falcon technology, securing blockchain history against quantum threats - **Why It's Hot**: First major blockchain to implement quantum-resistant signatures - **Bullish Factor**: Considered by many the only project that is truly quantum-safe - **Investment Thesis**: Early mover advantage in quantum resistance with proven technology #### **2. Hedera Hashgraph (HBAR)** - Government-Grade Security - **Quantum Shield**: Employs SHA-384 cryptography, a level of security that even the most powerful quantum computers are unlikely to breach - **Secret Weapon**: Compliance with top-secret government standards - **Market Position**: Enterprise adoption accelerating rapidly - **Growth Potential**: Massive institutional backing driving adoption #### **3. Quantum Resistant Ledger (QRL)** - Purpose-Built Protection - **Core Focus**: Uses QRL to protect transactions on a platform built with resistance against quantum computing attacks - **Technical Edge**: Incorporating advanced cryptographic techniques like XMSS and Winternitz One-Time Signature - **Investment Case**: Pure-play quantum resistance with dedicated development team #### **4. IOTA (MIOTA)** - IoT Quantum Shield - **Unique Position**: Exploring quantum-resistant solutions with advanced cryptographic techniques - **Market Opportunity**: IoT device security in quantum era - **Bullish Catalyst**: Growing IoT market needs quantum-safe solutions **singularityNet(AGIX) **Fetch.ai(FET) **Virtual protocol(VIRTUAL) **Grass network($GRASS) This are the to Next gen-Ai Tokens #Trade smart #quantumcomputers #NextGenToken #CryptoBullish

## ⚡ The Perfect Storm: Why NOW is the Quantum-AI Moment:Becoming the foundation of the next crypto

The quantum threat isn't coming - it's here. Smart investors are already positioning themselves in quantum-resistant cryptocurrencies that will survive and thrive in the post-quantum world.
### 🥇 **Top Quantum-Resistant Champions**
#### **1. Algorand (ALGO)** - The Quantum Pioneer
- **Quantum Defense**: Algorand leads with Falcon technology, securing blockchain history against quantum threats
- **Why It's Hot**: First major blockchain to implement quantum-resistant signatures
- **Bullish Factor**: Considered by many the only project that is truly quantum-safe
- **Investment Thesis**: Early mover advantage in quantum resistance with proven technology

#### **2. Hedera Hashgraph (HBAR)** - Government-Grade Security
- **Quantum Shield**: Employs SHA-384 cryptography, a level of security that even the most powerful quantum computers are unlikely to breach
- **Secret Weapon**: Compliance with top-secret government standards
- **Market Position**: Enterprise adoption accelerating rapidly
- **Growth Potential**: Massive institutional backing driving adoption

#### **3. Quantum Resistant Ledger (QRL)** - Purpose-Built Protection
- **Core Focus**: Uses QRL to protect transactions on a platform built with resistance against quantum computing attacks
- **Technical Edge**: Incorporating advanced cryptographic techniques like XMSS and Winternitz One-Time Signature
- **Investment Case**: Pure-play quantum resistance with dedicated development team

#### **4. IOTA (MIOTA)** - IoT Quantum Shield
- **Unique Position**: Exploring quantum-resistant solutions with advanced cryptographic techniques
- **Market Opportunity**: IoT device security in quantum era
- **Bullish Catalyst**: Growing IoT market needs quantum-safe solutions
**singularityNet(AGIX)
**Fetch.ai(FET)
**Virtual protocol(VIRTUAL)
**Grass network($GRASS)
This are the to Next gen-Ai Tokens
#Trade smart
#quantumcomputers #NextGenToken
#CryptoBullish
It doesn’t stop there is so much money to make with the expert duke, she’s really the best crypto expert out there and has guided me to millions too #quantumcomputers $IO $IP $IN
It doesn’t stop there is so much money to make with the expert duke, she’s really the best crypto expert out there and has guided me to millions too
#quantumcomputers
$IO
$IP
$IN
Rosita Hennessy
·
--
{T}`{Ë}`{L}`{Ê}`{G}`{R}`{Ã}`{M} ---> DUKEFXTRADER

i have been into crypto trading for over three years and during my time alone encountered a lot of losses in the market but i started making crypto investment with duke over a six months period now and i make good profits weekly from my crypto investment with the expert, have made more than $500,000 profit with the expert, work with her.......

{T}`{Ë}`{L}`{Ê}`{G}`{R}`{Ã}`{M} ---> DUKEFXTRADER

$ALICE
$ETH
$ASTER
·
--
Bearish
My 30 Days' PNL
2025-08-18~2025-09-16
+$198.81
+6.70%
Login to explore more contents
Explore the latest crypto news
⚡️ Be a part of the latests discussions in crypto
💬 Interact with your favorite creators
👍 Enjoy content that interests you
Email / Phone number