Binance Square

Jarbij

Άνοιγμα συναλλαγής
Επενδυτής υψηλής συχνότητας
3.8 χρόνια
24 Ακολούθηση
70 Ακόλουθοι
223 Μου αρέσει
34 Κοινοποιήσεις
Δημοσιεύσεις
Χαρτοφυλάκιο
·
--
跌麻了
跌麻了
蜡币小鑫
·
--
大盘怎么又在跌了

我尼玛啊,不让过年了是吧

无情的大盘,把钱还我,我不玩了

继续给大家发BTC🧧

点赞关注,一路暴富
·
--
涨涨涨
涨涨涨
蜡币小鑫
·
--
突破25000粉了

老规矩BTC大🧧继续安排

明天目标26000粉

目标30000粉黄V必须拿下

关注我领红包点我主页进聊天室
·
--
等风来
等风来
蜡币小鑫
·
--
行情又进入调整震荡状态了

继续摆烂等风来吧

这行情不动就不会亏

继续每天发发BTC🧧涨涨粉吧
·
--
1
1
小龟快跑
·
--
大红包来咯
·
--
loss again
loss again
·
--
$XPL #plasma$XPL #plasma Until now, every Bitcoin Improvement Proposal (BIP) that needed cryptographic primitives had to reinvent the wheel. Each one came bundled with its own custom Python implementation of the secp256k1 elliptic curve and related algorithms, each subtly different from one another. These inconsistencies introduced quiet liabilities and made reviewing BIPs unnecessarily complicated. This problem was recently highlighted in Bitcoin Optech Newsletter #348, and it’s something at least a handful of developers in the Bitcoin development community have long felt: there should be a unified, reusable standard for cryptographic BIP reference secp256k1 code. Last week, Jonas Nick and Tim Ruffing of Blockstream research and Sebastian Falbesoner made big progress towards this. As part of their existing ChillDKG proposal, the team released secp256k1lab. A new, intentionally INSECURE Python library for prototyping, experimenting, and BIP specifications. It’s not for production use (because it’s not constant-time and therefore vulnerable to side-channel attacks), but it fills a critical gap: it offers a clean, consistent reference for secp256k1 functionality, including BIP-340-style Schnorr signatures, ECDH, and low-level field/group arithmetic. The goal is simple: make it easier and safer to write future BIPs by avoiding redundant, one-off implementations. For BIP authors, this means: less custom code, fewer spec issues, and a clearer path from prototype to proposal.

$XPL #plasma

$XPL #plasma Until now, every Bitcoin Improvement Proposal (BIP) that needed cryptographic primitives had to reinvent the wheel. Each one came bundled with its own custom Python implementation of the secp256k1 elliptic curve and related algorithms, each subtly different from one another. These inconsistencies introduced quiet liabilities and made reviewing BIPs unnecessarily complicated. This problem was recently highlighted in Bitcoin Optech Newsletter #348, and it’s something at least a handful of developers in the Bitcoin development community have long felt: there should be a unified, reusable standard for cryptographic BIP reference secp256k1 code.
Last week, Jonas Nick and Tim Ruffing of Blockstream research and Sebastian Falbesoner made big progress towards this. As part of their existing ChillDKG proposal, the team released secp256k1lab. A new, intentionally INSECURE Python library for prototyping, experimenting, and BIP specifications. It’s not for production use (because it’s not constant-time and therefore vulnerable to side-channel attacks), but it fills a critical gap: it offers a clean, consistent reference for secp256k1 functionality, including BIP-340-style Schnorr signatures, ECDH, and low-level field/group arithmetic. The goal is simple: make it easier and safer to write future BIPs by avoiding redundant, one-off implementations. For BIP authors, this means: less custom code, fewer spec issues, and a clearer path from prototype to proposal.
·
--
In this campaign,I am getting reward or noT,,plz coment..❤️❤️
In this campaign,I am getting reward or noT,,plz coment..❤️❤️
·
--
Happy NeW year 2026____Start with a big blow🕯️🕯️
Happy NeW year 2026____Start with a big blow🕯️🕯️
·
--
#binancetradingchlange
#binancetradingchlange
Πρόσφατες συναλλαγές
0 συναλλαγές
BNB/USD1
·
--
great
great
User-shushi
·
--
As we conclude 2025, the #2025withBinance campaign celebrates a landmark year where the global crypto community reached over 300 million users. Throughout the year, Binance facilitated a staggering $64 trillion in cumulative trading volume, proving that liquidity never sleeps. The personalized "Year in Review" reports allowed users to relive their unique milestones, from their first venture into the Web3 Wallet—which saw $546.7 billion in transactions—to mastering Binance Earn, where 14.9 million participants collected over $1.2 billion in rewards. With the GENIUS Act providing regulatory clarity and stablecoins surpassing $300 billion, 2025 solidified crypto’s role in the mainstream financial landscape. This journey reflects our collective resilience, turning raw trading data into a shared story of growth, innovation, and a decentralized future.

2025 Binance Community Milestones

Feature2025 AchievementImpactBinance Pay1.36 billion transactions$121 billion spent globallyWeb3 Wallet13.2 million active users$546.7 billion in volumeBinance Earn14.9 million users$1.2 billion in rewards collectedEducation3.2 million usersUtilized new Binance AI summaries

Would you like me to help you find the specific link to your personalized 2025 report or explain how to participate in the 5,000 USDC Binance Square giveaway?
·
--
yes sir❤️❤️
yes sir❤️❤️
User-shushi
·
--
As we conclude 2025, the #2025withBinance campaign celebrates a landmark year where the global crypto community reached over 300 million users. Throughout the year, Binance facilitated a staggering $64 trillion in cumulative trading volume, proving that liquidity never sleeps. The personalized "Year in Review" reports allowed users to relive their unique milestones, from their first venture into the Web3 Wallet—which saw $546.7 billion in transactions—to mastering Binance Earn, where 14.9 million participants collected over $1.2 billion in rewards. With the GENIUS Act providing regulatory clarity and stablecoins surpassing $300 billion, 2025 solidified crypto’s role in the mainstream financial landscape. This journey reflects our collective resilience, turning raw trading data into a shared story of growth, innovation, and a decentralized future.

2025 Binance Community Milestones

Feature2025 AchievementImpactBinance Pay1.36 billion transactions$121 billion spent globallyWeb3 Wallet13.2 million active users$546.7 billion in volumeBinance Earn14.9 million users$1.2 billion in rewards collectedEducation3.2 million usersUtilized new Binance AI summaries

Would you like me to help you find the specific link to your personalized 2025 report or explain how to participate in the 5,000 USDC Binance Square giveaway?
·
--
super❤️❤️
super❤️❤️
User-rabin
·
--
#2025withBinance
As we wrap up 2025, the #2025withBinance campaign has emerged as a powerful celebration of the global crypto community’s resilience and growth. This year marked a significant turning point, with Binance reaching over 250 million users and driving a staggering $64 trillion in cumulative trading volume. Through personalized "Year in Review" reports, users are reliving their unique milestones, from their first Web3 venture to mastering the Binance Earn ecosystem, which saw nearly 15 million participants. With the introduction of the GENIUS Act providing regulatory clarity and stablecoins surpassing $300 billion, 2025 has solidified crypto's role in the mainstream financial landscape. As we look toward 2026, the focus remains on building a transparent, user-centric future together.

2025 Binance Ecosystem Highlights

Feature2025 AchievementBinance Pay1.36 billion transactions completedWeb3 Wallet$546.7 billion in total transaction volumeCommunityOver 26 million users using crypto for daily payments

Would you like me to help you find your personalized 2025 Binance summary or explain how to join the latest rewards campaign?

Binance 2025 Year in Review

This video provides insights into the digital marketing and social trends that shaped campaigns like #2025withBinance throughout the year.
·
--
加油
加油
投研看剑
·
--
给兄弟们发个红包吧,这波起飞了

李哥带单账户全部走完了,还有5000个现货没有走,就这样吧,卖飞永赚!

这波账户总体还可以1000U打到目前38000刀,加油兄弟们!
·
--
4
4
Max Maximalist
·
--
Ανατιμητική
#Max 教育慈善社区共识在币安广场的首秀数据。谢谢所有参与直播的朋友们。$GIGGLE
{spot}(GIGGLEUSDT)
·
--
ANOTHER LOOS😢
ANOTHER LOOS😢
·
--
BIG LOSS TODY😓
BIG LOSS TODY😓
·
--
#BNBATH and $BNB Until now, every Bitcoin Improvement Proposal (BIP) that needed cryptographic primitives had to reinvent the wheel. Each one came bundled with its own custom Python implementation of the secp256k1 elliptic curve and related algorithms, each subtly different from one another. These inconsistencies introduced quiet liabilities and made reviewing BIPs unnecessarily complicated. This problem was recently highlighted in Bitcoin Optech Newsletter #348, and it’s something at least a handful of developers in the Bitcoin development community have long felt: there should be a unified, reusable standard for cryptographic BIP reference secp256k1 code. Last week, Jonas Nick and Tim Ruffing of Blockstream research and Sebastian Falbesoner made big progress towards this. As part of their existing ChillDKG proposal, the team released secp256k1lab. A new, intentionally INSECURE Python library for prototyping, experimenting, and BIP specifications. It’s not for production use (because it’s not constant-time and therefore vulnerable to side-channel attacks), but it fills a critical gap: it offers a clean, consistent reference for secp256k1 functionality, including BIP-340-style Schnorr signatures, ECDH, and low-level field/group arithmetic. The goal is simple: make it easier and safer to write future BIPs by avoiding redundant, one-off implementations. For BIP authors, this means: less custom code, fewer spec issues, and a clearer path from prototype to proposal.
#BNBATH and $BNB Until now, every Bitcoin Improvement Proposal (BIP) that needed cryptographic primitives had to reinvent the wheel. Each one came bundled with its own custom Python implementation of the secp256k1 elliptic curve and related algorithms, each subtly different from one another. These inconsistencies introduced quiet liabilities and made reviewing BIPs unnecessarily complicated. This problem was recently highlighted in Bitcoin Optech Newsletter #348, and it’s something at least a handful of developers in the Bitcoin development community have long felt: there should be a unified, reusable standard for cryptographic BIP reference secp256k1 code.
Last week, Jonas Nick and Tim Ruffing of Blockstream research and Sebastian Falbesoner made big progress towards this. As part of their existing ChillDKG proposal, the team released secp256k1lab. A new, intentionally INSECURE Python library for prototyping, experimenting, and BIP specifications. It’s not for production use (because it’s not constant-time and therefore vulnerable to side-channel attacks), but it fills a critical gap: it offers a clean, consistent reference for secp256k1 functionality, including BIP-340-style Schnorr signatures, ECDH, and low-level field/group arithmetic. The goal is simple: make it easier and safer to write future BIPs by avoiding redundant, one-off implementations. For BIP authors, this means: less custom code, fewer spec issues, and a clearer path from prototype to proposal.
·
--
#Plume $PLUME Until now, every Bitcoin Improvement Proposal (BIP) that needed cryptographic primitives had to reinvent the wheel. Each one came bundled with its own custom Python implementation of the secp256k1 elliptic curve and related algorithms, each subtly different from one another. These inconsistencies introduced quiet liabilities and made reviewing BIPs unnecessarily complicated. This problem was recently highlighted in Bitcoin Optech Newsletter #348, and it’s something at least a handful of developers in the Bitcoin development community have long felt: there should be a unified, reusable standard for cryptographic BIP reference secp256k1 code. Last week, Jonas Nick and Tim Ruffing of Blockstream research and Sebastian Falbesoner made big progress towards this. As part of their existing ChillDKG proposal, the team released secp256k1lab. A new, intentionally INSECURE Python library for prototyping, experimenting, and BIP specifications. It’s not for production use (because it’s not constant-time and therefore vulnerable to side-channel attacks), but it fills a critical gap: it offers a clean, consistent reference for secp256k1 functionality, including BIP-340-style Schnorr signatures, ECDH, and low-level field/group arithmetic. The goal is simple: make it easier and safer to write future BIPs by avoiding redundant, one-off implementations. For BIP authors, this means: less custom code, fewer spec issues, and a clearer path from prototype to proposal.
#Plume $PLUME Until now, every Bitcoin Improvement Proposal (BIP) that needed cryptographic primitives had to reinvent the wheel. Each one came bundled with its own custom Python implementation of the secp256k1 elliptic curve and related algorithms, each subtly different from one another. These inconsistencies introduced quiet liabilities and made reviewing BIPs unnecessarily complicated. This problem was recently highlighted in Bitcoin Optech Newsletter #348, and it’s something at least a handful of developers in the Bitcoin development community have long felt: there should be a unified, reusable standard for cryptographic BIP reference secp256k1 code.
Last week, Jonas Nick and Tim Ruffing of Blockstream research and Sebastian Falbesoner made big progress towards this. As part of their existing ChillDKG proposal, the team released secp256k1lab. A new, intentionally INSECURE Python library for prototyping, experimenting, and BIP specifications. It’s not for production use (because it’s not constant-time and therefore vulnerable to side-channel attacks), but it fills a critical gap: it offers a clean, consistent reference for secp256k1 functionality, including BIP-340-style Schnorr signatures, ECDH, and low-level field/group arithmetic. The goal is simple: make it easier and safer to write future BIPs by avoiding redundant, one-off implementations. For BIP authors, this means: less custom code, fewer spec issues, and a clearer path from prototype to proposal.
·
--
#Dolomite $DOLO Until now, every Bitcoin Improvement Proposal (BIP) that needed cryptographic primitives had to reinvent the wheel. Each one came bundled with its own custom Python implementation of the secp256k1 elliptic curve and related algorithms, each subtly different from one another. These inconsistencies introduced quiet liabilities and made reviewing BIPs unnecessarily complicated. This problem was recently highlighted in Bitcoin Optech Newsletter #348, and it’s something at least a handful of developers in the Bitcoin development community have long felt: there should be a unified, reusable standard for cryptographic BIP reference secp256k1 code. Last week, Jonas Nick and Tim Ruffing of Blockstream research and Sebastian Falbesoner made big progress towards this. As part of their existing ChillDKG proposal, the team released secp256k1lab. A new, intentionally INSECURE Python library for prototyping, experimenting, and BIP specifications. It’s not for production use (because it’s not constant-time and therefore vulnerable to side-channel attacks), but it fills a critical gap: it offers a clean, consistent reference for secp256k1 functionality, including BIP-340-style Schnorr signatures, ECDH, and low-level field/group arithmetic. The goal is simple: make it easier and safer to write future BIPs by avoiding redundant, one-off implementations. For BIP authors, this means: less custom code, fewer spec issues, and a clearer path from prototype to proposal.
#Dolomite $DOLO
Until now, every Bitcoin Improvement Proposal (BIP) that needed cryptographic primitives had to reinvent the wheel. Each one came bundled with its own custom Python implementation of the secp256k1 elliptic curve and related algorithms, each subtly different from one another. These inconsistencies introduced quiet liabilities and made reviewing BIPs unnecessarily complicated. This problem was recently highlighted in Bitcoin Optech Newsletter #348, and it’s something at least a handful of developers in the Bitcoin development community have long felt: there should be a unified, reusable standard for cryptographic BIP reference secp256k1 code.
Last week, Jonas Nick and Tim Ruffing of Blockstream research and Sebastian Falbesoner made big progress towards this. As part of their existing ChillDKG proposal, the team released secp256k1lab. A new, intentionally INSECURE Python library for prototyping, experimenting, and BIP specifications. It’s not for production use (because it’s not constant-time and therefore vulnerable to side-channel attacks), but it fills a critical gap: it offers a clean, consistent reference for secp256k1 functionality, including BIP-340-style Schnorr signatures, ECDH, and low-level field/group arithmetic. The goal is simple: make it easier and safer to write future BIPs by avoiding redundant, one-off implementations. For BIP authors, this means: less custom code, fewer spec issues, and a clearer path from prototype to proposal.
·
--
 #BounceBitPrime $BB Until now, every Bitcoin Improvement Proposal (BIP) that needed cryptographic primitives had to reinvent the wheel. Each one came bundled with its own custom Python implementation of the secp256k1 elliptic curve and related algorithms, each subtly different from one another. These inconsistencies introduced quiet liabilities and made reviewing BIPs unnecessarily complicated. This problem was recently highlighted in Bitcoin Optech Newsletter #348, and it’s something at least a handful of developers in the Bitcoin development community have long felt: there should be a unified, reusable standard for cryptographic BIP reference secp256k1 code. Last week, Jonas Nick and Tim Ruffing of Blockstream research and Sebastian Falbesoner made big progress towards this. As part of their existing ChillDKG proposal, the team released secp256k1lab. A new, intentionally INSECURE Python library for prototyping, experimenting, and BIP specifications. It’s not for production use (because it’s not constant-time and therefore vulnerable to side-channel attacks), but it fills a critical gap: it offers a clean, consistent reference for secp256k1 functionality, including BIP-340-style Schnorr signatures, ECDH, and low-level field/group arithmetic. The goal is simple: make it easier and safer to write future BIPs by avoiding redundant, one-off implementations. For BIP authors, this means: less custom code, fewer spec issues, and a clearer path from prototype to proposal.
 #BounceBitPrime $BB Until now, every Bitcoin Improvement Proposal (BIP) that needed cryptographic primitives had to reinvent the wheel. Each one came bundled with its own custom Python implementation of the secp256k1 elliptic curve and related algorithms, each subtly different from one another. These inconsistencies introduced quiet liabilities and made reviewing BIPs unnecessarily complicated. This problem was recently highlighted in Bitcoin Optech Newsletter #348, and it’s something at least a handful of developers in the Bitcoin development community have long felt: there should be a unified, reusable standard for cryptographic BIP reference secp256k1 code.
Last week, Jonas Nick and Tim Ruffing of Blockstream research and Sebastian Falbesoner made big progress towards this. As part of their existing ChillDKG proposal, the team released secp256k1lab. A new, intentionally INSECURE Python library for prototyping, experimenting, and BIP specifications. It’s not for production use (because it’s not constant-time and therefore vulnerable to side-channel attacks), but it fills a critical gap: it offers a clean, consistent reference for secp256k1 functionality, including BIP-340-style Schnorr signatures, ECDH, and low-level field/group arithmetic. The goal is simple: make it easier and safer to write future BIPs by avoiding redundant, one-off implementations. For BIP authors, this means: less custom code, fewer spec issues, and a clearer path from prototype to proposal.
Συνδεθείτε για να εξερευνήσετε περισσότερα περιεχόμενα
Εξερευνήστε τα τελευταία νέα για τα κρύπτο
⚡️ Συμμετέχετε στις πιο πρόσφατες συζητήσεις για τα κρύπτο
💬 Αλληλεπιδράστε με τους αγαπημένους σας δημιουργούς
👍 Απολαύστε περιεχόμενο που σας ενδιαφέρει
Διεύθυνση email/αριθμός τηλεφώνου
Χάρτης τοποθεσίας
Προτιμήσεις cookie
Όροι και Προϋπ. της πλατφόρμας